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Plans 

Solutions to quality control by lot sampling through the game theory approach 
are presented, and the results are compared with those obtained by the classical 
statistical method. Single and double plans are considered and modeled as two- 
person zero-sum games, and optimal solutions are found. Most of the solutions 
are reminiscent of known statistical results and reinforce them by adding new 
features. 
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1. I N T R O D U C T I O N  

Game t h e o ~  has been shown to be a useful tool mainly for solving problems 
in economic and military behavior. Recently, the Nobel  Prize in economics 
was conferred on John Nash, John Harsanyi,  and Reinhard Selten for their 
achievements in applying game theory to economics. 

In most  practical problems a complete solution is usually provided by 
several theories or approaches. The classical approach for solving problems 
of  quality control is the statistical one. Here, we present solutions to 
quality control  by lof sampling, through the game theory approach. 

Quality control is one of  the major  problems in technology. Quality is 
a conformance to specifications, and the degree of  conformance is the 
measure of  quality. Quality control procedures are divided into (i) control 
of  variables and (ii) control of  attributes. 

A variable is an item product  characteristic measurable on a con- 
tinuous scale, and therefore may have fractional values. An attribute is a 
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characteristic which is either possessed or not by an item, and it is always 
an integer number.  The diameter  of  a shaft and the carbon content  of  steel 
are examples of  variables, while acceptable or rejected products,  undersize, 
on size, or oversize products  are examples of  attributes. Attribute control 
is generally an after-production fact control,  i.e., the manufactured product  
is classified as being either acceptable or  unacceptable. A control  variable 
may  be an after or  before the product ion fact, as it is occasionally possible 
to measure and change the item characteristic while the process is 
running. 

When the quality characteristic has to be counted rather  than 
measured,  attributes are involved rather than variables. 

The term defect or defective is used when dealing with attributes, and 
denotes faults or errors of  an item which cause it to be unacceptable.  An 
unacceptable item may  have one or more  defects. Let us consider, for 
example, a hole, with a prescribed specification, being inspected by a plug 
gauge with one end able and the other one unable to enter the hole. With 
such a gauge one may  sort the product  into: on size, oversize, or  undersize, 
or  simply acceptable or unacceptable. In either case we do not  record the 
actual dimensions, but count  the number  of rejected items in each sample 
and express them as a fraction (or as a percentage) of  the inspected num- 
ber. This is perhaps the most  common  approach and permits the use of  a 
binomial  distribution in analyzing the results. 

The binomial probabil i ty of any specific number  of defectives in a 
sample of any size is 

n! 
P(," I n, p ) =  p"q . . . .  (1) 

r! ( n - r ) !  

and the probabil i ty of  the occurrence of  a defective is 

S~r ~ P  
p = or /Y = (2) 

Z n number  of  samples 

where r is the number  of times an event occurs, i.e., the number  of  rejected 
items for a single sample, n is the number  of  trials, i.e., number  of inspected 
items (n > r), p is the probabil i ty that the event will occur, i.e., a defective 
item will be found, and q = 1 - p  is the probabil i ty that  the event will not 
occur, i.e., the item will be acceptable. 

The probabil i ty of obtaining at most  r defectives is a cumulative prob-  
ability, equal to the sum P(0)  + P( 1 ) + P(2)  + --- + P(r) (see, for example,  
ref. 2). Formally,  if X is a discrete r andom variable, with each possible 
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outcome r in the range {0, 1, 2 .... }, then the probability that X assumes a 
value less than or equal to a number x is 

F(x)=P(X<~x)= ~ P(r) (3) 
r = O  

where F(x) is the cumulative distribution function of the random variable X. 
The most common inspection procedure is to arrange the products in 

batches or lots and select at random a sample from each batch. A decision 
of accepting or rejecting the batch as a whole is made on the basis of the 
sampling analysis result. If the judgment is made from a sample result, 
there is always a risk of accepting a bad batch and rejecting a good one. 
The efficiency of the judgment depends primarily on the number of items 
inspected; the larger the sample, the better the precision of sorting into good 
and bad batches, and the smaller the proportion of necessary sampling. 

Sampling plans may be divided into the following types: (i) single, 
(ii) double, and (iii) multiple. A single-sampling plan is defined by the size 
of the lot (N), the size of the sample (n), and the acceptance number (c). 
For example, the plan defined by N = 900, n = 90, c = 2 means that 90 units 
were inspected from a total of 900, and if two or less defectives are found 
the entire lot is accepted; if three or more defectives are found in the 
90-unit sample, the entire lot is rejected. 

Double-sampling plans are somewhat more complicated. On the initial 
sample, a decision based on the inspection results is made whether (i) to 
accept the lot, (ii) to reject the lot, or (iii) to take another sample. If a 
second sample is required, the results of that inspection and of the first 
inspection are used to reject or accept the lot. A double-sampling plan is 
defined by the size of the lot (N), the size of the sample in the first sample 
(n~), the acceptance number in the first sample (c~), the rejection number 
in the first sample (r~), the sample size on the second sample (n2), the 
acceptance number for both samples (c2), and the rejection number for 
both samples (r2). 

If the values of r~ and r,_ are not prescribed, they are equal to c2 + 1. 
An illustrative example is as follows: let N= 900 ,  n~ =90,  c~ = 1, rl =5 ,  
n_, = 200, c_, = 6, and r 2 = 7. An initial sample size equal to 90 is selected 
from the lot of 900 and inspected. One of the following judgments is made: 
(i) If there are 1 or less defectives (c~), the lot is accepted, (ii) if there are 
5 or more defectives (rj) the lot is rejected, and (iii) if there are 2, 3, or 4 
defectives, no decision is made, and a second sample is considered. 

A second sample of 200 (n_,) from the lot (N) is inspected, and one of 
the following judgments is made: (i) If there are 6 or less defectives (c2) in 
both samples, the lot is accepted. This number is obtained by 2 in the first 
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sample and 4 or less in the second sample, by 3 in the first sample and 3 
or less in the second sample, or by 4 in the first sample and 2 or less in the 
second sample. (ii) If there are 7 or more defectives (r 2) in both samples, 
the lot is rejected. This number is obtained by 2 in the first sample and 5 
or more in the second sample, by 3 in the first sample and 4 or more in 
the second sample, or by 4 in the first sample and 3 or more in the second 
sample. 

The efficiency of any sampling scheme as a detector of good and bad 
batches can be represented by means of its operating characteristic (OC), 
in which the vertical scale presents the chance of accepting a batch of the 
quality specified on the horizontal scale. 

2. QUALITY  C O N T R O L  BY S A M P L I N G  PLANES AS A 
T W O - P E R S O N  Z E R O - S U M  G A M E  

The traditional method in treating problems of quality control is the 
statistical one. It is interesting to try solving the same problems by other 
approaches, to compare the results, and possibly to find new aspects than 
those achieved through statistical methods. 

Game theory is concerned with those situations in which the result of 
the choice made by a person depends on the choice made by another per- 
son. A number is attributed to each result and the established gain (reward 
or benefit) stands for the value granted by the player to the result of his or 
her choice. 

The aim of an ideal player in game theory is to obtain the greatest 
profit, having in view that the other players have similar aims. 

A game is defined if: (i) There are at least two players. (ii) The game 
starts when one or more players makes a choice from many precise possible 
choices. (iii) The first choice, as well as any other choice, leads to a certain 
situation which, in turn, induces the player who must make the next choice 
as well as all choices corresponding to this player (in this situation). In any 
case, for each game, it is surely known who must play and what the choices 
are during the whole development of the game. (iv) The choices of a player 
may be known or not by the other players. A game in which each player's 
choice is immediately known by all players is called a game with complete 
information. Chess is an example of a game with complete information, 
while almost all card games are not. This notion is important because there 
is always an optimal method for solving such a game, without resort to 
chance. (v) If a game is described by its consecutive situations, then there 
is a rule which specifies the end of the game. (vi) Each game ends in a 
situation which confers a reward or loss for each engaged player. 
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Any particular instance of a game is called a play (elementary game). 
The rules of the game, which are known to the players, specify the set of 
pure strategies available to each of the players. 

A pure strategy is a plan formulated by a player prior to a play, which 
will cover all the possible decisions which may be confronted during any 
play of the game. A mixed strategy is a probabilistic choice from the set 
of pure strategies. The optimal strategy yields the best of the possible 
outcomes. An optimal solution is said to be reached if no player finds it 
beneficial to alter strategy. In this case, the game is said to be in a state o f  
equilibrium. 

A game with two players in which any gain of one player equals a 
corresponding loss of the other player is known as a two-person zero-sum 
game. In such a game, it suffices to express the outcomes (the rewards or 
the payoff function values) in terms of the payoff to one player. The 
optimal solution of a two-person zero-sum game is given by the minimax 
criterion (to be explained bel.ow) which selects for each player a strategy- 
yielding the best of the worst possible outcomes. Thus the minimax criterion 
accommodates the fact that each player is acting against the other's interest. 

In the present paper, we have in view those games in which the number 
of pure strategies is finite. Then, the game can be described by an M by N 
matrix C =  [e~], where each entry c,j represents the amount that the first 
player (in the present case the searcher or the inspector) receives from the 
second (in this work the inspected lot, which symbolizes the producer) if 
the first player uses his ith pure strategy and the second player uses h i s j th  
pure strategy. It may happen that the matrix C will have a saddle point, i.e., 
an element c,. 7, such that 

max cv ,=c , .7 ,=  min c~7 (4) 
1 <~ i ~ m  I <~j<~n 

In this case, the game would be in a state of equilibrium if the first player 
chooses his i ' th  pure strategy and the second player chooses his j ' t h  
pure strategy. However, usually such a saddle point does not exist and we 
are forced to use mixed strategies, denoted by X = ( x t ,  x2 ..... x,,) and 
Y=(Yt ,  Y2 ..... y,) ,  respectively, where xi, i =  1 ..... m, is the probability 
that the first player will choose his ith pure strategy and yj ,  j = I .... , n, is 
the probability that the second player will choose his j t h  pure strategy. 

When the first player plays a mixed strategy X and the second player 
a mixed strategy Y, the expected payment is given by the function 

c(X, r )  = y~ y.  co.x,y j (5) 
i j 
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The fundamental theorem of two-person zero-sum finite games states that 

max min c( X, Y) = min max c( X, Y) (6) 
X Y Y X 

This minimax value of c is called the vahle (v) of the game. 
Searching for an optimal sampling plan to decide the acceptance of a 

given lot is similar to a decision problem in a two-person zero-sum game. 
The inspector and the incoming batch may be considered the two players 
of the game. There is a finite number of moves or pure strategies in the 
hands of each player; the former may use a finite number of sampling 
plans, while the latter may be effective or defective, or may have different 
incoming qualities. A solution for such a game would help the inspector to 
decide what kind of sampling inspection has to be performed to obtain an 
optimal response concerning the acceptance of a certain batch. The prob- 
ability of a batch (or lot) acceptance may serve as a payoff function and the 
binomial probability distribution may be used to calculate its values. An 
optimal solution for a two-person zero-sum game is given by the minimax 
criterion, ~6.5) which selects for each player a strategy yielding the best of 
the worst possible outcomes. 

The method is exemplified below for particular data sets, trying to 
answer a number of problems concerning single- or double-sampling plans, 
and, when possible, to compare the results with those obtained by statistical 
methods. 

2.1.  S i n g l e - S a m p l i n g  P lans  

E x a m p l e  1. Let us suppose an inspector having to inspect a batch 
of a good quality (Pt = 0.01 or p,_ = 0.02) containing 600 units. He chooses, 
for example, :~ three sampling plans, the first with n~ = 50 and c~ =0 ,  the 
second with n 2 = 50 and c2 = 1, and the third with n 3 = 100 and c 3 = 3. In 
other words, the two players of this game are the inspector with his three 
strategies corresponding to the three sampling plans previously mentioned, 
and the inspected batch with its two strategies, i.e., the proportion qualities 
p~ =0.01 and p,_=0.02. Table I presents the payoff matrix of this game, 
a 3 x 2  matrix with entries calculated by means of the Poisson table 
and representing the probabilities of the batch acceptance. The Poisson 
distribution is a limiting form of the binomial distribution and may be 
successfully used instead of the latter when n is large in comparison to N 
and p approaches zero. We have in view the following probability; 

)tx;" 
P ( x ) =  x ! '  x=O,  1, 2 .... (7) 
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Table I. The Payoff Matrix of the 
Game in Example 1" 

Pl P2 

sl 0.61 0.37 
s 2 0.91 0.74 
s s 0.98 0.86 

"Each ( i , j )  entry, ie{1,2,3}, j~{l,2}, 
represents the acceptance probability of a 
pj-quality batch when the si sampling plan 
is used. 

where x represents the number  of  occurrences of  the same event in n inde- 
pendent trials a n d / l  = np represents the mean. 

One may observe that the first pure strategy s~ is dominated by the 
other two strategies, s2 and ss, that is, the gain corresponding to the pair 
(s~, p~) is smaller than the gains corresponding to the pairs (s 2, p~) or 
(s3, Pl), and the gain corresponding to the pair (s~, P2) is smaller than the 
gains corresponding to the pairs (s 2, P2) or (s3, P2), respectively. It follows 
that we can eliminate the first strategy sl as being a priori disadvantageous, 
and reduce the game matrix to a 2 x 2 square matrix, as shown in Table II. 
This new matrix has a saddle point 0.86, that is, an element which is the 
minimum in its row and the maximum in its column. As is well known (for 
example, ref. 5), such a special point is called the value of the game and the 
corresponding pair of  pure strategies is called the optimal solution of the 
game. We have in view the pair of  strategies (s3, P2) and its corresponding 
payoff  or gain (matrix entry), which equals 0.86. In other words, the 
optimal solution of our  imaginary game is obtained when the inspector 
chooses his third strategy, while the received batch has 2 % defectives. 
Rosander 's  (9) statistical results are: (i) When the lot size N and the sample 
size n remain unchanged, the first sampling plan, whose acceptance number  

Table II. The Reduced Payoff Matrix 
of the Game in Example 1 ~ 

Pl P2 

s~ 0.91 0.74 
ss 0.98 0.86 

"This matrix was obtained by eliminating 
the first row in the matrix in Table I. 
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is 0, is the worst. Such a plan rejects too high a proportion of acceptable 
quality lots, contrary to intuition and common sense. (ii) If  N remains fixed 
while the sample size as well as the acceptance number are increased, we 
obtain the best sample plan of the three, i.e., s 3. 

Let us recall our previous results. We rejected the first strategy s~ (the 
first sampling plan) as being a priori disadvantageous from the game 
theory viewpoint, and selected the third strategy s3 (the third sampling 
plan) as an optimal strategy in detecting a lot of a good quality. In other 
words, our results reinforce the statistical conclusions by adding new 
motivation to choose the third single-sampling plan as the best inspection 
plan in the case of a good-quality lot. 

E x a m p l e  2. It is interesting to see what happens when the same 
problem is raised for a 600-unit batch of relatively poor quality, that is, 
p~ = 0.07 and P2 = 0.08. After Rosander, (7~ the OC curves associated with 
the three sample plans show that only small proportions of such batches 
are accepted by the first plan, where the acceptance number equals zero, 
the second plan, with the acceptance number 1, is not an improvement on 
the first, while the third plan, with the acceptance number 3, has an accep- 
tance level between that of the other two plans. 

From the point of view of game theory, we have a new game where 
the strategies of the inspector remain unchanged, while the batch has at its 
disposal two new strategies, one for the proportion defective p~ = 0.07 and 
the other for P2 = 0.08. Table III  represents the normal form of the game. 
As in Table I, we can eliminate the first strategy s, ,  since it is dominated 
by the third strategy s3. Thus, we obtain a simplified normal form of the 
game, represented by the 2 x 2 matrix in Table IV. We may conclude that 
the pair of strategies (s 2, P2) is a saddle point of our second game. In other 
words, an optimal solution of such a game is obtained when for a 600-unit 
lot with 0.08 defectives, the inspector will use his second sample plan, that 

Table III. The Payoff Matrix of the 
Game in Example 2" 

PJ P2 

sl 0.03 0.04 
s2 0.14 0.09 
s 3 0.08 0.04 

"Each  ( i , j )  entry, i E { I , 2 , 3 } ,  j ~ { l , 2 } ,  
represents the acceptance probability of a 
pfqual i ty  batch when the sl sampling plan 
is used. 
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Table IV. The Reduced Payoff Matrix 
of the Game in Example 2" 

Pt P2 

s2 0.14 0.09 
s3 0.08 0.04 

"This matrix was obtained by eliminating 
the first row in the matrix in Table III. 

is, n,_ = 50 and c2 = 1. One should bear in mind that an optimal solution 
shows the best of the worst outcomes of a game, taking into account that 
the two players have opposite interests and each player is acting against the 
other's interest. Returning to the statistical results in Example 2, one may 
observe the similarity between these results and the present ones based on 
a game theory approach. The same second sampling plan, s2, appears to 
be the most advantageous in looking at poor-quality batches. 

E x a m p l e  3. We can imagine a new game with the same players as 
in the previous two games and the same strategies for the inspector, but 
with different strategies for the batch. We have in view a new situation 
when we do not know the batch (lot) quality, but we know the operating 
characteristic curves associated with the three sampling plans. Since such 
curves are asymptotic to the percent defective axis, we can determine the 
limiting value for the incoming percent defective (batch quality) and thus 
establish the batch "strategies." 

If we continue to discuss Rosander's 17~ example of single-sampling 
plans for the 600-unit batch, we can presume that the incoming lot has at 
its disposal four strategies, namely p~ = 0.01, p2 = 0.03, Pa =0.05, P4 =0.07. 

Table V. The Payoff Matrix of the 
Game in Example 3" 

Pl P2 P3 P4 

s I 0.61 0.22 0.08 0.03 
s~, 0.91 0.56 0.29 0.14 
s3 0.98 0.65 0.27 0.08 

Each (i , j)  entry, i~ { 1, 2, 3}, j E  { 1, 2, 3, 4}, represents 
the acceptance probability of a pj-quality batch when the 
si sampling plan is used. 
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Table VI. The Reduced Payoff 
Matrix of the Game in Example 3" 

P3 P4 

s2 0.29 0.67 
s3 0.27 0.08 

"This matrix was obtained by eliminating 
the first row and the first and second 
columns in the matrix in Table V. 

In other words, the received lot may be of good, intermediate, or poor 
quality. The normal form of this third game is represented by the 3 x 4 
matrix (Table V). As in the previous two games, the first strategy s, of the 
inspector must be eliminated as being a priori disadvantageous, since it is 
dominated by the strategies s2 and s 3. The remaining 2 x 4 matrix may be 
reduced to a 2 • 2 matrix (Table VI) by eliminating the first two strategies 
of the incoming lot as being a priori disadvantageous. Indeed, p~ and P2 are 
dominated by P3 and P4. This last matrix has a saddle point, representing 
an optimal solution of the third imaginary game, namely the pair of 
strategies (s2, P4) and the game value equals 0.14. Thus, the incoming 
batch will select the poorest quality from its quality range (the set of 
strategies Pl,  P2, P3, P4). The inspector does not know the true quality of 
the receiving lot, but he knows its range and if he wants to give a greater 
chance to an intermediate-quality batch to be accepted, he has to select his 
second sampling plan. According to our best knowledge, there is no 
statistical example similar to the present considered case. Thus, we could 
not compare our result with any statistical one. 

In the present section we considered three different mathematical 
games to model three different situations of an incoming lot of items; in all 
cases the inspector has at his disposal three sampling plans. These games 
are two-person zero-sum games, and it is not clear if they are of complete 
or incomplete information. Since all their associated matrices may be 
reduced to a single element by eliminating the dominated strategies, tS) it 
follows that all previous games are with complete information and that in 
such cases there is always an optimal solution. 

2.2.  D o u b l e - S a m p l i n g  Plans 

Example 4. Let us model a double-sampling plan as a two-person 
zero-sum game. The considered example is presented in Besterfield ~3) with 
the following data: N=2400 ,  n~=150, c , = I ,  r j = 4 ,  n2=200,  c2=4,  
F2~5.  
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Table VII. The Payoff Matrix of the 
Game in Example 4 

bl b2 

a I 0.558 0.442 
a 2 0.221 0.779 

In our imaginary game the inspector is one of the players and the lot 
with 2400 units and 0.01 fraction defective is the other one. Suppose that 
this inspector selected the previous double-sample plan, such that there are 
two pure strategies at his disposal: a~ representing the single-sample plan 
with the data nl, c~, and r~; and a2, representing the single-sample plan 
with the data n~ + r t 2 ,  C2, and r2. The inspected lot, as an immobile player, 
has at its disposals two pure strategies: b~ to be accepted and b2 to be 
rejected. The normal form of the game is represented by the matrix in 
Table VII, such that each position ( i , j )  contains the acceptance proba- 
bility of the incoming batch (this time, with 1% defectives only). The 
acceptance probability is calculated by means of the Poisson probability, 
taking into consideration the lot quality (proportion defective) and the 
sample size in each strategy. For example, the payoff associated with the pair 
of strategies (a l, b l) represents the acceptance probability of a 2400-unit lot 
with 0.01 proportion defectives when a 150-unit sample is randomly chosen 
from the lot with the acceptance number c] = 1. The payoff corresponding 
to the pair of strategies (a2, b~) represents the acceptance probability of the 
given lot when the combined samples (150 units + 200 units) are used with 
the acceptance number c2 =4.  Symbolically, these two probabilities are 
obtained from the following two equations: 

(P,)] = (P1 or less) 1 

(Po)2 = (P2)l (P2 or less)2 q'- (P3) l  (Pl or I~s)2 

(8) 

(9) 

The matrix in Table VII has no saddle point, that is, the pure maximin 
(maximum of rows minimum) is different from the pure minimax (mini- 
mum of columns maximum). In other words, the game value v stands 
between 0.442 and 0.558. This difficulty may be avoided by choosing a pure 
strategy regulated by chance, i.e., a mixed strategy. To obtain the optimal 
strategy of the inspector we must solve the following system of equations: 

all pl + a21 p2 = v 

a~2p] + a22P2 = v 
(lO) 

822/79/3-4-20 
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Each a o. represents a 2 x 2 matrix entry, v stands for the value of the game, 
and p~ +P2 = 1, where Pl and P2 are probabilities. 

In the considered particular case one must solve the system 

0.558pl + 0.221p2 = v 
( l l )  

0.442pt + 0.779p~ = v 

and obtain p~ = 0.827, P2 = 0.173, and v=0.5. In other words, an optimal 
mixed strategy of the inspector is obtained when he uses its first pure 
strategy with the probability 0.827 and its second pure strategy with the 
probability 0.173. This result recalls that the first sample in a double- 
sample plan is preferentially used in a lot-by-lot sampling inspection. 

To obtain an optimal strategy for the incoming lot, one must solve the 
second system of equations 

0.558q~ + 0.442q2 = v 
(12) 

0.221ql + 0.779qz = v 

As previously mentioned, v represents the value of the game and q~ and qz  

are probabilities such that ql + q2 = 1. One obtains q, = q2 =0.5. In other 
words, an optimal strategy of the received lot is that in which the batch is 
accepted or rejected with the same probability 0.5. An optimal mixed 
strategy for the inspector and an optimal mixed strategy for the given lot 
form a pair of strategies representing an optimal solution of the proposed 
game.(3,6) 

3. C O N C L U S I O N S  

Game theory may contribute to studies of conflict and solve problems 
of practical interest (e.g., refs. 2 and 4). Some aspects of the theory were 
developed in the present investigation and applied to problems of quality 
control by lot sampling. 

The obtained results have added new aspects to the classical statistical 
results of quality control by lot sampling. In the statistical approach, the 
type of plan for a particular producer or product is based not only on its 
effectiveness, but also on additional aspects such as administrative costs, 
quality information, number of units inspected, and psychological impact. 
The game theory approach takes into account mainly mathematical criteria 
and results; it does not use visual tools such as diagrams. As proved in the 
present investigation, using the game theory approach one reaches similar 
results to the classical statistical one, proving that there is always an 
optimal inspection plan to detect a lot of an incoming quality (percentage 
of defectives). 
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It has been shown in the literature that usually there is more than one 
possibility of  interpreting the results of  a game-theory analysis, and that 
some of the interpretations are more useful than others. In particular, there 
is some merit in achieving saddlepoint solutions whenever possible. The 
present paper considers only a very small part of  the quality control 
problems. It should be interesting to study, for example, problems of  multi- 
ple-sampling plans and problems of  control plans for variables. It also 
should be interesting and surely most efficient to write and implement com- 
puter programs to verify the existence of  and find (when it is the case) the 
saddlepoint of a normal  matrix game associated with a quality control 
problem. 
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